
Introduction to Java Atomic

Classes & Operations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how Java atomic classes &

operations provide concurrent programs
with lock-free, thread-safe mechanisms
to read from & write to single variables

3

Learning Objectives in this Part of the Lesson
• Understand how Java atomic classes &

operations provide concurrent programs
with lock-free, thread-safe mechanisms
to read from & write to single variables

• Note a human known use of atomic
operations

4

Overview of Java
Atomic Classes

5

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic
actions on objects

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

6

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic
actions on objects

• Atomic variables

• Provide lock-free & thread-safe
operations on single variables

See docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

7See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic
actions on objects

• Atomic variables

• Provide lock-free & thread-safe
operations on single variables

• e.g., AtomicLong supports
atomic “compare-and-swap”
operations

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

8

Overview of Java Atomic Classes
• The java.util.concurrent.atomic

package several types of atomic
actions on objects

• Atomic variables

• LongAdder

• Allows multiple threads to update
a common sum efficiently under
high contention

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/LongAdder.html

9

Overview of
Atomic Operations

10

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers

Overview of Atomic Operations

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

See software.intel.com/en-us/node/506090

https://software.intel.com/en-us/node/506090

11See en.wikipedia.org/wiki/Compare-and-swap

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory
location to a given value & iff they are the same it modifies the contents

of that memory location to a given new value & returns the old value

http://en.wikipedia.org/wiki/Compare-and-swap

12

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory
location to a given value & iff they are the same it modifies the contents

of that memory location to a given new value & returns the old value

13

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory
location to a given value & iff they are the same it modifies the contents

of that memory location to a given new value & returns the old value

Assume that reading & writing to *loc is atomic

14

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory
location to a given value & iff they are the same it modifies the contents

of that memory location to a given new value & returns the old value

15

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations

Compare-and-swap atomically compares the current contents of a memory
location to a given value & iff they are the same it modifies the contents

of that memory location to a given new value & returns the old value

16

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

See en.wikipedia.org/wiki/Spinlock

The lock() method efficiently uses compareAndSwap()
to implement mutual exclusion (mutex) via a “spin-lock”

http://en.wikipedia.org/wiki/Spinlock

17See 15418.courses.cs.cmu.edu/spring2013/article/3

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The lock() method efficiently uses compareAndSwap()
to implement mutual exclusion (mutex) via a “spin-lock”

http://15418.courses.cs.cmu.edu/spring2013/article/3

18

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

Overview of Atomic Operations
int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

compareAndSwap() must be called only once per lock attempt

The lock() method efficiently uses compareAndSwap()
to implement mutual exclusion (mutex) via a “spin-lock”

19

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The lock() method efficiently uses compareAndSwap()
to implement mutual exclusion (mutex) via a “spin-lock”

20

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

compareAndSwap() checks if the location pointed to by
mutex is 0 & iff that’s true it atomically sets the value to 1

21

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

compareAndSwap() checks if the location pointed to by
mutex is 0 & iff that’s true it atomically sets the value to 1

22

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 0))

continue;

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

If compareAndSwap() returns 0 the mutex was
atomically “locked” so the loop can now exit

23

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 1))

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically
resets the mutex value to 0

24

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 1))

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically
resets the mutex value to 0

25

void lock(int *mutex) {

while (!(*mutex == 0 && compareAndSwap(mutex, 0, 1) == 1))

continue;

}

void unlock(int *mutex) {

START_ATOMIC();

*mutex = 0;

END_ATOMIC();

}

• Atomics operations in Java are
implemented in hardware with
some support at the OS & VM
layers, e.g.

• CAS – “compare-and-swap”

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

Overview of Atomic Operations

The unlock() method atomically
resets the mutex value to 0

26

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

See en.wikipedia.org/wiki/Test-and-set

• Atomic operations can be
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations

Test-and-set atomically modifies the contents
of a memory location & returns its old value

http://en.wikipedia.org/wiki/Test-and-set

27

• Atomic operations can be
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations
int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

Test-and-set atomically modifies the contents
of a memory location & returns its old value

28

• Atomic operations can be
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations
int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

Test-and-set atomically modifies the contents
of a memory location & returns its old value

29

• Atomic operations can be
implemented other ways

• e.g., “test-and-set”

Overview of Atomic Operations
int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

Test-and-set atomically modifies the contents
of a memory location & returns its old value

30

void lock(int *loc) {

while (testAndSet(loc) == 1);

}

void unlock(int *loc) {

START_ATOMIC();

*loc = 0;

END_ATOMIC();

}

Test-and-set can also be used
to implement a spin-lock mutex

Overview of Atomic Operations
int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

• Atomic operations can be
implemented other ways

• e.g., “test-and-set”

31

Overview of Atomic Operations
• compareAndSwap() provides a

more general solution than
testAndSet()

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

See pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf

32

Overview of Atomic Operations
• compareAndSwap() provides a

more general solution than
testAndSet()

• e.g., it can set the value to
something other than 1 or 0

This capability is used by various Atomic* classes in Java

int compareAndSwap(int *loc,

int expected,

int updated) {

START_ATOMIC();

int oldValue = *loc;

if (oldValue == expected)

*loc = updated;

END_ATOMIC();

return oldValue;

}

int testAndSet(int *loc) {

int oldValue;

START_ATOMIC();

oldValue = *loc;

*loc = 1; // 1 == locked

END_ATOMIC();

return oldValue;

}

33

Human Known Use
of Atomic Operations

34

Human Known Use of Atomic Operations
• One “human” known use of atomic

operations is a Star Trek transporter

See en.wikipedia.org/wiki/Transporter_(Star_Trek)

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)

35

Human Known Use of Atomic Operations
• One “human” known use of atomic

operations is a Star Trek transporter

• Converts a person/object into an energy
pattern & “beams” them to a destination
where they’re converted back into matter

36

Human Known Use of Atomic Operations
• One “human” known use of atomic

operations is a Star Trek transporter

• Converts a person/object into an energy
pattern & “beams” them to a destination
where they’re converted back into matter

• This process must occur atomically or a
horrible accident will occur!

See en.wikipedia.org/wiki/Transporter_(Star_Trek)#Transporter_accidents

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)#Transporter_accidents

37

Human Known Use of Atomic Operations
• Another “human” known use of atomic

operations is “apparition” in Harry Potter

See harrypotter.fandom.com/wiki/Apparition

https://harrypotter.fandom.com/wiki/Apparition

38

Human Known Use of Atomic Operations
• Another “human” known use of atomic

operations is “apparition” in Harry Potter

• If the user focuses properly they
disappear from their current location &
instantly reappear at the desired location

See harrypotter.fandom.com/wiki/Apparition

https://harrypotter.fandom.com/wiki/Apparition

39

Human Known Use of Atomic Operations
• Another “human” known use of atomic

operations is “apparition” in Harry Potter

• If the user focuses properly they
disappear from their current location &
instantly reappear at the desired location

• However, “spinching” occurs if a wizard
or witch fails to apparate atomically!

See harrypotter.fandom.com/wiki/Splinching

https://harrypotter.fandom.com/wiki/Splinching

40

End of Introduction to Java
Atomic Classes & Operations

